Interdisciplinary Collaborator Recommendation Based on Research Content Similarity
نویسندگان
چکیده
Most existing methods on research collaborator recommendation focus on promoting collaboration within a specific discipline and exploit a network structure derived from co-authorship or co-citation information. To find collaboration opportunities outside researchers’ own fields of expertise and beyond their social network, we present an interdisciplinary collaborator recommendation method based on research content similarity. In the proposed method, we calculate textual features that reflect a researcher’s interests using a research grant database. To find the most relevant researchers who work in other fields, we compare constructing a pairwise similarity matrix in a feature space and exploiting existing social networks with content-based similarity. We present a case study at the Graduate University for Advanced Studies in Japan in which actual collaborations across departments are used as ground truth. The results indicate that our content-based approach can accurately predict interdisciplinary collaboration compared with the conventional collaboration network-based approaches. key words: interdisciplinary research, collaborator recommendation, academic database analysis
منابع مشابه
Random Walk-based Beneficial Collaborators Recommendation Exploiting Dynamic Research Interests and Academic Influence
It is laborious for researchers to find proper collaborators who can provide researching guidance besides collaborating. Beneficial Collaborators (BCs), researchers who have a high academic level and relevant topics, can genuinely help researchers to enrich their research. Though many efforts have made to develop collaborator recommendation, most of existing works have mainly focused on recomme...
متن کاملA Weighted Topic Model Enhanced Approach for complementary Collaborator Recommendation
Collaborations among interdisciplinary scientists are playing an increasingly important role in science innovations. As it is very difficult for a researcher to master the full knowledge of his/her targeted research areas, how to find suitable collaborators of complementary expertise has turned to be a key factor for researchers to succeed. With the expansion of the Web, the availability of she...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملTransaction / Regular Paper Title
With the shifting focus of organizations and governments towards digitization of academic and technical documents, there has been an increasing need to use this reserve of scholarly documents for developing applications that can facilitate and aid in better management of research. In addition to this, the evolving nature of research problems has made them essentially interdisciplinary. As a res...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 100-D شماره
صفحات -
تاریخ انتشار 2017